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a b s t r a c t

This paper presents a comprehensive experimental analysis of lateral forces generated

by single pedestrians during continuous walking on a treadmill. Two different

conditions are investigated; initially the treadmill is fixed and then it is laterally driven

in a sinusoidal motion at varying combinations of frequencies (0.33–1.07 Hz) and

human adults and covered approximately 55 km of walking distributed between 4954

individual tests. When walking on a laterally moving surface, motion-induced forces

develop at the frequency of the movement and are herewith quantified through

equivalent velocity and acceleration proportional coefficients. Their dependency on the

vibration frequency and amplitude is presented, both in terms of mean values and

probabilistically to illustrate the randomness associated with intra- and inter-subject

variability. It is shown that the motion-induced portion of the pedestrian load

(on average) inputs energy into the structure in the frequency range (normalised by

the mean walking frequency) between approximately 0.6 and 1.2. Furthermore, it is

shown that the load component in phase with the acceleration of the treadmill depends

on the frequency of the movement, such that pedestrians (on average) subtract from the

overall modal mass for low frequency motion and add to the overall modal mass at

higher frequencies.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The widely publicised closure of Paris’ Solférino and London’s Millennium footbridges in 1999 [1] and 2000 [2] have led
to an understanding on the part of engineers and architects of the need to evaluate the potential for footbridge vibrations
that can be attributed to pedestrians. Within the scientific community, the closures has also led to the initiation of a new
tract of research, focused on the understanding of pedestrian loading, bridge response and their interaction. A plethora of
research on the topic now exists [3–10] and as a consequence, numerous other bridges of different length and type have
also been found prone to similar excessive lateral vibrations when exposed to large pedestrian crowds [11–15].

Only few national and international codes of practice and official design guidelines currently exist to help the designer
address this issue. Most of these are based on the main hypotheses, that pedestrian-induced lateral loads can be modelled
as velocity proportional loads or as ‘‘negative dampers’’, resulting from the ‘‘synchronised’’ lateral movement of
pedestrians. This pedestrian lateral excitation mechanism is often characterised as synchronous lateral excitation (SLE) or
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Nomenclature

a parameter in a power law fit
Aj fitting parameters in a spectral load model
b parameter in a power law fit
Bj fitting parameters in a spectral load model
cp velocity proportional pedestrian load

coefficient
cp mean value of the velocity proportional pedes-

trian load coefficient
ĉp estimated error of the velocity proportional

pedestrian load coefficient
CoFx co-spectral density between F and x

DLFj dynamic load factor of load harmonic j

DLFj mean value of the dynamic load factor of load
harmonic j

f frequency
fL frequency of the lateral motion of the

treadmill
fn natural frequency of a single-degree-of-

freedom system
fNy Nyquist frequency
fp pedestrian pacing frequency
fw pedestrian walking frequency
f w mean pedestrian walking frequency
F pedestrian-induced lateral force
F̂ measurement error
FD damping force
FD,eq equivalent pedestrian damping force
FE elastic restoring force (spring force)
Fi lateral force peaks (i=1y3)
FI inertia force
FI,eq equivalent pedestrian inertia force
Gj amplitude of load harmonic j

Hn frequency response function of a single-
degree-of-freedom system

k̂ calibration constant
Kn stiffness of a single-degree-of-freedom system
mp pedestrian body mass
M mass of stage 3 of the treadmill

ergometer device
Nav number of windows used to calculate a

particular PSD
p probability density function
PD,eq average work done by FD,eq per unit time
PF average work done by F per unit time
QuFx quad-spectral density between F and x

SF PSD of F

SF,j PSD of F around load harmonic j

SF x cross-spectral density between F and x

SF _x cross-spectral density between F and _x
t time
Ttot total signal duration
Tw fundamental period of lateral pedestrian-

induced load

vp pedestrian walking speed
W body weight
x lateral displacement of the treadmill
_x lateral velocity of the treadmill
€x lateral acceleration of the treadmill
x0 lateral displacement amplitude of the

treadmill
_x0 lateral velocity amplitude of the treadmill
€x0 lateral acceleration amplitude of the treadmill
df frequency resolution in a spectrum
Df bandwidth
zn damping ratio of a single-degree-of-

freedom system
mX sample mean of X

x parameter in the lognormal distribution
r linear correlation coefficient
Rp acceleration proportional pedestrian load

coefficient
Rp mean value of the acceleration proportional

pedestrian load coefficient
R̂p estimated error of the acceleration propor-

tional pedestrian load coefficient
sDLFj

standard deviation of the DLF of load harmonic j

s2
F total area of the PSD of F (total signal variance)

sF̂ standard deviation of the error of the pedes-
trian-induced load

~s2
F area of the PSD of F in a specific

frequency range
~s2

F,j area of the PSD of F around load harmonic j

sF _x total area of the cross-spectral density
between F and _x

~sF _x area of the cross-spectral density between F

and _x within a specific frequency range
~sF €x area of the cross-spectral density between F

and €x within a specific frequency range
~s2

u,eq total area of the equivalent power spectral
density of u

~s2
u,j area of the PSD of u around load harmonic j

ŝV standard deviation of the measured voltage
signal from load cells

s2
X sample variance of X

sx standard deviation of x

s €x standard deviation of €x
fj phase angle of load harmonic j

fxF phase spectrum between x and F

j phase angle
w parameter in the lognormal distribution
o angular frequency
oL angular frequency of the treadmill motion
Cov[] covariance operator
E[] expected value operator
F ½� Fourier transform operator
Re[] real part operator
Var[] variance operator
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human–structure ‘‘lock-in’’ [2,11,16]. The UK National Annex to Eurocode (EN 1991-2) [17], the HIVOSS guidelines [18] and
the fib (2005) recommendations [19] are for the most part based on this hypothesis. Alternatively, the French Road Agency
(Sétra) has published a guideline in which the lateral acceleration, calculated assuming random pedestrian behaviour,
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should be limited to 0.10 m/s2. The value is chosen, so as to avoid SLE [20] and thus the destabilising effect of excessive
negative damping. The limit is based on research carried out during the temporary closure of the Solférino Bridge. Results
from a limited number of controlled pedestrian crowd tests indicated that there is a transition point at which a rapid
increase in the lateral bridge response is triggered. The transition is explained as random pedestrian walking that becomes
‘‘synchronised’’ when lateral bridge accelerations increase beyond 0.10 m/s2.

Although the current codes of practice and guidelines help to improve the designer’s ability to predict the potential for
large amplitude lateral footbridge vibrations, it should be recognised that they are based on a limited understanding of the
actual phenomenon. This can be understood by examining the origins of the physical models they rely on. Those that
utilise the concept of negative damping, employ an empirically derived velocity-proportional pedestrian damping constant
cp=300 N s/m, which represents an averaged value for each pedestrian, derived from back calculations of the measured
modal response during specific controlled crowd tests on the Millennium Bridge [2]. The constant is assumed to remain
unchanged, regardless of frequency of bridge motion. Furthermore, its determination is highly susceptible to
experimentally obtained parameters, such as mode shape, modal mass and pedestrian distribution; rendering the
universality of its application questionable. Similarly, the Sétra guidelines rely on a binary frequency-independent
acceleration criterion, which suggests that the same probability of synchronisation is assigned to all pedestrians
independent of the ratio between their walking frequency and the lateral vibration frequency of the bridge.

In recent years, various researchers have studied the mechanics of pedestrian-induced lateral forces on a laterally
vibrating surface. Different hypotheses exist about the complex nature of the human–structure interaction and unlike
current codes of practice and design guidelines which are primarily based on empirical full-scale observations, many of
these hypotheses are supported by theoretical modelling of the interaction [21–25], which lack the proper experimental
evidence to support their applicability.

In this paper, an in-depth examination of frequency-dependent lateral forces produced by a pedestrian are analysed and
presented. An extensive experimental campaign was carried out, where the characteristics of the lateral forces from 71
volunteering pedestrians were measured during treadmill walking, both on a fixed surface and during lateral sinusoidal
motion at different combinations of frequencies (0.33–1.07 Hz) and amplitudes (4.5–48 mm). Emphasis is placed on the
treatment of both the motion-induced forces, defined as equivalent velocity and acceleration proportional coefficients, and
those measured on a fixed surface. All of the data are presented in a probabilistic manner which illustrates the randomness
associated with both intra- and inter-subject variability.
2. Mechanics of pedestrian-induced lateral forces

2.1. Laterally fixed surface

During walking, a person generates a ground reaction force, or simply GRF, through the acceleration (and deceleration)
of the centre of mass of their body. In general, the GRF can be represented by a three-dimensional vector which varies in
time and in space due to the forward movement of the person [8].

The lateral components of the GRF are small, compared to the vertical ones, and are generated through the balancing of
the body [26]. The shape of a generalised lateral force time history is shown in Fig. 1. A single footstep is characterised by
three lateral force peaks, F1 to F3, with values around 4–5 percent of the body weight [27]. However, several factors
influence the shape of the walking force which is governed by large intra- and inter-subject variability. The intra-subject
variability denotes differences in the GRF of the same pedestrian measured at two different time instances and depends on
the type of footwear, walking speed and random variations in the gait, mood of the person, etc. [8,28]. The inter-subject
variability refers to the variability between different people and depends on physiological parameters of the pedestrians,
age, gender, race, etc. [29].

Due to the intra-subject variability, the time history of the walking force is a narrow-band random process, centred
around the fundamental lateral loading frequency, fw (defined as half the pacing frequency, fp) and its higher harmonics.
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Fig. 1. Typical shape of a walking force from (a) a single footstep and (b) a series of consecutive footsteps (figure reproduced from [5]).
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However, lateral walking forces are often modelled as a truncated Fourier series with a fundamental frequency, fw, based
on the simplified assumption that each footstep can be replicated from a single ‘‘characteristic’’ footstep (see Fig. 1):

FðtÞ ¼
Xn

j ¼ 1

Gjsinð2pjf wt�fjÞ (1)

where Gj and fj are the amplitude and phase angle of load harmonic j, respectively, and n is the number of load harmonics
included in the truncated Fourier series. In most cases, the load amplitude is defined through the body weight normalised
dynamic load factor DLFj = Gj/W. According to Bachmann and Ammann [30], the values of the first five load harmonics are
DLFj={0.039; 0.01; 0.042; 0.012; 0.015}, j=1y5. In a later publication by same authors, the values of DLF1 ¼DLF3 ¼ 0:1 are
suggested for design purposes [31]. However, no justification for the difference is given. Other studies aimed at finding the
DLFs from measured GRFs on stationary platforms indicate that they are independent of the walking speed and vary only
slightly between males and females [32–34].

Non-zero load harmonics at even integer harmonics imply that the gait is asymmetric and that the walking is imperfect. This
intra-subject variability was addressed by Pizzimenti [35], who used an instrumented treadmill to measure the continuous
GRFs of 66 individuals. Ricciardelli and Pizzimenti [28] defined DLFs for an average (perfectly periodic) footprint as the sum of
the contributions in the Fourier spectrum of the measured force in a narrow band around the frequency of the respective
harmonic. The characteristic values (with 95 percent probability of non-exeedance) of the first five DLFs were reported as DLFj

= {0.04; 0.0077; 0.023; 0.0043; 0.011}, j=1y5. In the frequency domain, Pizzimenti and Ricciardelli [36] present a
characteristic power spectral density (PSD), SF,j(f), for the first five load harmonics in a general (non-dimensional) form as

SF,jðf Þ � f

~s2
F,j

¼
2Ajffiffiffiffiffiffi
2p
p

Bj

exp �2
f=jf w�1

Bj

� �2
( )

(2)

where Aj and Bj are parameters determined by a data fit and ~s2
F,j is the area of the PSD around the jth harmonic.

2.2. Lateral human–structure interaction

When walking on a laterally oscillating surface, it has been postulated that people tend to spread their legs apart and
change their walking frequency and phase, to match that of the floor [16]. This alleged modification of the gait due to floor
oscillations has become known within the civil engineering community as human–structure synchronisation. Early works
by Fujino et al. [11] describe the concept of synchronisation. Their experimental studies on a human walking on a laterally
moving platform showed that the walking frequency became synchronised to the platform frequency for lateral
amplitudes in the range of 10–20 mm. This was used to explain the excessive lateral vibrations of the Toda Park Bridge in
Japan during periods when the bridge is congested by large crowds. However, details regarding the platform tests have not
been presented. Charles and Bui [37] defined the equivalent number of resonance pedestrians from back calculations of the
measured response on the Solférino bridge and Danbon and Grillaud [38] used their result to propose a load model, where
the number of synchronised resonance pedestrians increases linearly with the bridge displacement amplitude.

Strogatz et al. [21] offered a mathematical framework for the modelling of human–structure interaction, assuming that
each pedestrian reacts to a weak stimulus from the bridge, either through the lateral displacement [21] or the acceleration
[39]. If the stimulus is strong enough and the natural frequency of the bridge is close to the (original) walking frequency of
the individual, the pedestrian locks into synchrony with the structure. The models are presented in the same framework as
the theory of coupled oscillators, known from e.g. complex biological systems [40], but they lack any experimental
evidence that can confirm their capability to predict pedestrian-induced lateral vibrations. According to Butz [33], only
persons with natural walking frequency within 0.1 Hz of the lateral vibration frequency can synchronise with the
structural motion. Similar observations were reported by Nakamura et al. [41], who investigated walking on the spot on a
laterally moving shaking table. If the hypothesis that the correlated pedestrian force (or equivalent number of resonance
pedestrians) increases with the vibration amplitude, due to an increasing number of synchronised pedestrians, is true, then
the results by Butz [33] and Nakamura et al. [41] suggest that the susceptibility to SLE depends on the frequency ratio
between the pedestrian walking frequency and the frequency of the lateral movement. This is contradictory to the basic
assumption upon which current design recommendations are based.

An alternative approach is taken by Barker [42] who uses a simplified mechanical model of the human body centre of
mass to show that synchronisation of the step is not a necessary precondition for diverging lateral vibrations to occur.
Following along the same line, Macdonald [25] uses an inverted pendulum model to describe the lateral movement of the
centre of mass and comes to similar conclusion. He argues that balance control is a matter of foot placement rather than
timing of the step. His results are supported by full-scale measurements conducted on the Cliffton Suspension bridge
during a period with large crowd-induced lateral vibrations [15].

2.3. Laterally moving surface

The importance of human–structure interaction when modelling pedestrian-induced lateral loading on long span
footbridges has already been highlighted. Consequently, many researchers have attempted to measure pedestrian GRFs on
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a laterally moving surface. Shortly after the closure of the London Millennium Bridge, platform tests were performed at
Imperial College where it was found that the fundamental DLF increases with the lateral vibration amplitude and that at
frequency 1.0 Hz there is a 40 percent probability of synchronisation or ‘‘lock-in’’, for vibration amplitudes of 5 mm [43].
However, very few details regarding these experiments have been published.

Similar platform tests were commissioned following the closure of the Solférino bridge in Paris [20], with the main
conclusions being that the mean amplitude of the fundamental load harmonic is 35 N and that synchronisation with the
platform does generally not occur for lateral accelerations lower than 0.15 m/s2 [37]. Rönnquist [13] and Rönnquist and
Strömmen [44] report that the lateral load increases both with an increase in the lateral acceleration of the structure and
also as the walking frequency approaches the natural frequency of the platform. Similarly, Butz [33] reports that the DLF
for a synchronised pedestrian depends of the structure and for the non-synchronised pedestrian the fundamental DLF
should be taken as measured on a rigid surface. Common for all these tests however, is the fact that no distinction is made
between pedestrian forces in phase with velocity or acceleration of the structure.

Phase synchronisation was initially addressed by McRobie et al. [16] who report that the load amplitudes can reach
values as high as 300 N and the component in phase with the velocity of the structure can reach 100 N, when the vibration
amplitude of the structure is 100 mm. Sun and Yuan [45] performed walking tests with seven individuals, using an
instrumented treadmill fixed onto a shaking table. They concluded that for small vibration amplitudes, the relative phase
between pedestrian and structure is variable (non-constant), but as the amplitude increases the phase becomes almost
constant and the walking frequency changes to the vibration frequency. Furthermore, they find that on average the
pedestrian load increases linearly with the acceleration and is 140.81 ahead of the bridge motion (S.D. 17.91).

The experimental setup presented herewith (Treadmill Ergometer Device as described in Section 3) was initially
constructed by Pizzimenti [35] and used in a pilot study with five different test subjects. The lateral GRFs were measured,
and Pizzimenti and Ricciardelli [36] identified two different loading mechanisms; the first one centred around the walking
frequency and its integer harmonics and the second one, the self-excited force, occurring at a frequency equal the vibration
frequency. The self-excited force was further subdivided into in-phase and out-of-phase (with the displacement) lateral
pedestrian load components. It is reported that the in-phase component of the force obtain negative values over the entire
frequency range, which implies that pedestrians act as negative mass on the structure. This is in line with Macdonald’s
observations [25]. For the out-of-phase-component, pedestrians act as negative dampers, only for one combination of
frequency and amplitude. At other frequencies, they add to the overall structural damping [36]. Since only five test subjects
were used in the study and a limited number of frequencies and amplitudes were tested, the results can only serve as a
qualitative indicator.

3. Current experimental investigations

3.1. Test subjects

During the summer of 2009, 71 healthy human volunteers (45 male and 26 female) with an age distribution according
to Table 1, a mean height of 1.73 m (S.D. 0.01 m) and a mean weight of 74.4 kg (S.D. 15.1 kg) participated in an
experimental campaign to determine pedestrian-induced lateral forces on a laterally vibrating platform. The lengths of the
volunteers’ legs were measured as well as the circumference of their wrist and ankle prior to the tests.

All tests which involved human test subjects were carried out in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki) for experiments involving humans.

3.2. Experimental setup

A Treadmill Ergometer Device, positioned in the laboratory of the Inter University Research on Building Aerodynamics
and Wind Engineering (CRIACIV) at the University of Florence in Prato, Italy, was used to measure the lateral GRF during
walking, Fig. 2. The treadmill was built in 2003 at the University of Reggio Calabria [35] and moved to CRIACIV in 2006.

In brief, the treadmill consists of three separate parts, stages 1–3. The base of the treadmill, consisting of steel beams
fixed on the laboratory floor is denoted by stage 1. Stage 2, which is a steel frame connected to the base through guide rails,
such that it can move laterally, is driven by a motor. This motor controls the lateral vibration frequency of the system as
well as the amplitude. Stage 3 consists of the walking surface with the dimension 100�180 cm, which is made of a steel
frame system covered with plywood panels and a rubber belt. The belt is driven by a motor, which is attached to stage 2
Table 1
Age and gender distribution of test subjects.

0–18 years 19–35 years 36–55 years 455 years Total

Male 0 29 14 2 45

Female 1 16 9 0 26

Total 1 45 23 2 71
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and therefore moves with the motion of the platform. The connection between stages 2 and 3, i.e. the belt and the laterally
driven frame is twofold. First of all, it is vertically suspended from the supporting frame (at stage 2) using low friction
hinges and secondly it is laterally supported with four flexural load cells. Images of various components of the treadmill are
shown in Fig. 2. Both the motion of the belt and the lateral motion of the treadmill are driven by asynchronous 1.1 kW
(1.5 HP) motors equipped with gearboxes. Both motors are controlled with inverters for variable belt speed and vibration
frequencies, respectively. A schematic representation of the system is shown in Fig. 3. The experimental setup is a slightly
modified version of that described by Pizzimenti and Ricciardelli [36] and Ricciardelli and Pizzimenti [28].

3.3. Other equipment

The resulting horizontal lateral force between stages 2 and 3 is measured with four load cells. Each load cell can
measure up to 500 N with a sensitivity of 3.7711 mV/N. The motion of the treadmill is measured with two high sensitivity
(10 V/g) ICP accelerometers (PCB Piezotronics, type 393B12). The accelerometers are connected to a 4 channel signal
conditioner (PCB Piezotronics, type 441A42). Furthermore, the displacement of the treadmill is measured using a laser with
sensitivity 100 mV/mm. The walking speed is determined using an encoder that measures the rotation of the steel cylinder
which drives the treadmill belt. All signals were acquired with 75 V 24-Bit data acquisition modules (National
Instruments, cDAQ-9172 and National Instruments, BNC 9234) at a sampling rate of 2048 Hz.

3.4. Test procedure

Subjects were requested to perform two types of walking on the treadmill; one without lateral motion of stage 3 of the
treadmill (denoted static tests) and one with lateral sinusoidal movement at various vibration frequencies and amplitudes



Table 2
Test matrix which shows the number of different subjects tested at each particular combination of lateral vibration amplitude and frequency.

Frequency

fL/x0 (Hz)

Lateral vibration amplitude

4.5 mm 10 mm 19.4 mm 28.7 mm 31.0 mm 38.3 mm 48.0 mm

0 Static test—71 subjects

0.33 45 65 59 35 36 48 60

0.40 45 65 59 35 36 48 60

0.43 45 65 59 35 36 47 59

0.47 45 65 59 35 35 47 58

0.50 45 66 60 35 36 47 58

0.60 46 66 60 35 35 47 22

0.70 46 66 60 34 34 47 18

0.77 45 65 59 34 31 46 14

0.80 46 66 59 34 29 44 11

0.83 46 66 59 34 27 32 8

0.87 46 66 59 33 10 23 4

0.90 46 66 59 33 9 21 3

0.93 46 66 59 33 8 17 2

0.97 46 66 58 21 8 14 2

1.00 46 64 57 21 7 12 2

1.03 45 64 57 15 6 5 0

1.07 45 64 56 14 6 5 0
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(denoted dynamic tests). Initially, each subject was asked to walk on the treadmill and select a comfortable walking speed.
This walking speed was subsequently used in both the static and the dynamic tests. Only one static test with a duration of
2 min was performed, whereas each subject performed several dynamic tests of 30 s duration, with vibration frequencies
in the range 0.33–1.07 Hz and displacement amplitudes between 4.5 and 48 mm. Typically, each test subject spent
between 1 and 2 h in the laboratory, depending on their availability and thereby the number of dynamic tests performed.
The order in which the dynamic tests were performed was determined by a combination of random and systematic
selections. After a successful completion of the static test, the displacement amplitudes of the treadmill were selected
randomly. The pedestrian was asked to walk continuously on the treadmill at each particular amplitude whilst the
frequency was increased in steps, from the lowest frequency tested to the highest one. Each step lasted 30 s plus a
transition time interval during which the frequency was changed. After sweeping through all the frequencies, a short break
was taken during which time the amplitude was changed. Generally, each subject was tested at both low, intermediate and
large amplitude vibrations. Most of the tests were recorded with a digital video camera and all comments from the test
subjects relating to the tests were recorded. The test matrix is given in Table 2, where the number in each cell indicates the
number of different subjects tested for that particular combination of frequency and amplitude.

A total of 71 static tests were performed and 4883 dynamic tests, covering the total walking distance of approximately
55 km.
3.5. Data post-processing

Initially, the DC components of all the measured signals were removed and subsequently the signals were re-sampled
from the original 2048 to 32 Hz, by applying a digital anti-aliasing lowpass FIR filter. The new (re-sampled) data were
further lowpass filtered with a cutoff frequency of 8 Hz for the static tests and 5 Hz for the dynamic tests. The spectral
densities presented herewith are generally estimated from an averaged periodogram of the measured time series. The
periodograms are obtained by dividing the original time series into a number of windows (possibly overlapping) and
calculating the discrete Fourier transform in each of them. No general rules can be made regarding the preferred shape of
the window (rectangular, raised cosine, etc.), its size or overlap percentage as it depends on the particular application as
well as a trade-off choice between the accuracy of the estimate and the desired frequency resolution [46,47]. Therefore,
different methods have been used depending on the particular application and in the following the frequency resolution,
df , number of averages, Nav, and the selected window function will be accounted for each time a new spectrum is
presented.

By taking advantage of the fact that the pedestrian-induced load is near-periodic with fundamental frequency equal the
(average) walking frequency, the most severe type of spectral leakage can be avoided by assuring that each window
contains an integer number of vibration cycles. This is achieved by identifying the dominant frequency in the signal from
the periodogram of the original time series, which has been zero padded to a much longer length (here 2048 s) for
enhancing the frequency resolution. Having identified the dominant frequency, the original time series is truncated such
that each window contains (as closely as possible) an integer number of vibration cycles. In the dynamic tests, the
fundamental period is taken as that of the lateral treadmill motion, determined from the periodogram of the zero-padded
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displacement signal. This ensures that the self-excited portion of the pedestrian-induced load is represented by an integer
number of vibration periods.
3.6. Calibration of the treadmill

A dynamic calibration of the treadmill was performed prior to the pedestrian tests to verify the sensitivity of the force
transducers and to determine the accuracy of the measurements. The treadmill is constructed such that a sinusoidal base
motion with angular frequency oL and amplitude x0 is generated at stage 2, and stage 3 can therefore be treated as a
single-degree-of-freedom (SDOF) system subject to the base motion x(t). The stiffness of this SDOF system is governed by
the stiffness of the load cells, which for all practical purposes may be treated as rigid. The equilibrium of forces (see Fig. 3)
is written according to d’Alambert’s principle as [50]

FIðtÞþFDðtÞþFEðtÞ ¼ FðtÞ (3)

where FI(t) is the inertia force, obtained as the mass M of stage 3 multiplied with the acceleration €xðtÞ, FD(t) is the damping
force which is considered negligible, FE(t) is the elastic force in the system, i.e. the measured force in the load cells and F(t)
is the external (pedestrian-induced) lateral load which acts on stage 3.

A calibration of the treadmill was made for all amplitudes and all frequencies in the range 0.27–1.17 Hz in step of
0.03 Hz and similar post-processing as described in Section 3.5 is adopted. The measured acceleration signal is used to
calibrate the load cells. The calibration constant, k̂, defined as the transformation of the voltage output from the load cells
to force, is determined from the measured standard deviation of the acceleration and strain signals, respectively. For each
combination of lateral frequency and amplitude a value for the calibration constant was obtained as

k̂i ¼M
s €x ,i

sVi
(4)

where s €x ,i and sVi are the measured standard deviations of the acceleration signal and the load cell signals, respectively.
The load cells showed a linear behaviour with a linear correlation coefficient r¼ 0:99997.
3.7. Static pedestrian walking tests

In the following, the power spectral density (PSD) of the pedestrian lateral force is defined as either a continuous or a
discrete single sided spectrum such that

Var½F� ¼ s2
F ¼

Z fNy

0
SF ðf Þ dfffi

XN=2þ1

k ¼ 1

SF ðfkÞdf (5)

where SF(f) is the spectral ordinate at frequency f, fNy is the Nyquist frequency (half the sampling rate), df is the frequency
resolution of the spectrum and N is the number of samples in the discrete Fourier transform. An example of a typical
measured force time history and the corresponding normalised square-root PSD is shown in Fig. 4. The intra-subject
variability in the loading is illustrated by the varying load amplitude in the time history and quantified through the
distribution of the energy around the main load harmonics.
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3.7.1. Equivalent ‘‘perfect’’ DLF

The intra-subject variability in the load makes a deterministic (and perfectly harmonic) description, similar to that in
Eq. (1), only possible through an equivalent load amplitude [28,48]. The amplitude, or the equivalent perfect DLF, is
obtained by requiring that the mean-square value of the response, ~s2

u,j, of a SDOF oscillator (with natural frequency, fn),
caused by the component of the measured force around load harmonic j, equals the mean-square response, ~s2

u,eq, from
a perfectly periodic force applied at resonance. The mean-square value of the response from the measured force is
obtained as

~s2
u,j ¼

Z fnþ fw=2

fn�fw=2
SF ðf ÞjHnðf Þj

2 df (6)

jHnðf Þj
2 ¼

1

K2
n

1�
f

fn

� �2
" #2

þ4z2
n

f

fn

� �2
2
4

3
5
�1

(7)

where Hn(f), Kn, fn and zn are the frequency response function, stiffness, natural frequency and damping of the single-
degree-of-freedom system, respectively, and fw is the pedestrian walking frequency. The equivalent DLF can now be
obtained from the following expression:

~s2
u,eq ¼

1

4K2
nz

2
n

DLF2
j W2

2
¼ ~s2

u,j (8)

The equivalent DLF depends on the modal damping and takes into account the filtering effect of the structure and that only
load contributions in a narrow band near the natural frequency of the structure contribute to the vibration. As the modal
damping ratio zn and thereby the bandwidth may vary between structures, a conservative (upper-bound) value for the
equivalent DLF is obtained by requiring that the mean-square value of the measured force, ~s2

F,j, in the total bandwidth
between two harmonics ðDfj ¼ fwÞ equals the mean-square value of the perfectly periodic force:

~s2
F,jðDfjÞ ¼

Z ðjþ1=2Þfw

ðj�1=2Þfw

SF ðf Þ df ¼
DLF2

j W2

2
(9)

Therefore, two different equivalent DLFs can be calculated; one according to Eq. (8), denoted the narrow-band model
and one according to Eq. (9) denoted the broad-band model, i.e.

DLFj ¼
2
ffiffiffi
2
p

zn ~su,jKn

W
narrow-band model (10)

DLFj ¼

ffiffiffi
2
p

~sF,j

W
broad-band model (11)

The main problem with calculating the narrow-band DLF is that the accuracy of the spectral estimate decreases with a
decrease in the bandwidth. This means that for low values of damping, the accuracy of the variance, ~s2

u,j, and thereby the
equivalent DLF, relies on an accurate representation of the PSD in a very narrow band around the mean pacing rate. Due to
the limited length of the measured force signal (2 min), the desired resolution to calculate the DLF for the narrow-band
model is obtained through a combination of averaging, windowing and zero-padding of the data. Firstly, the data are
divided into seven windows with 50 percent overlap and pre-multiplied with a Tukey window (a rectangular function with
cosine side lobes of width nw/4, where nw is the number of data points in the window). In each window, the data was
subsequently zero-padded to the total length of 16 times the original length (approximately 8 min). The smoothed
(average) spectrum was then used to calculate the narrow-band DLFs and the zero-padding thereby works as a
smoothening interpolation between the distinct frequencies in the spectrum of the original time series.

3.8. Dynamic pedestrian walking tests

As mentioned in Section 2.3, a pedestrian walking on a laterally driven surface will exert forces at the walking frequency
and its integer harmonics, as well as at the frequency of the lateral oscillation. Following Ricciardelli and Pizzimenti [28],
the latter force component will be referred to as ‘‘the self-excited force’’. An example of the measured pedestrian force and
its PSD is shown in Fig. 5 for a lateral vibration amplitude of 19.4 mm at the frequency 1.06 Hz. The shape of the force time
history is considerably different from that of the static tests (Fig. 4), due to the presence of the self-excited force
component at the lateral vibration frequency. The two peaks in the PSD also provide clear evidence that the pedestrian
walking frequency is not synchronised with that of the treadmill, which is an important observation as many mathematical
models rely on that assumption. The potential for human–structure interaction is treated in more detail in Section 4.3.1.
Firstly, the nature of the self-excited component of the force must be quantified, as not only the amplitude but also its
phase (related to the treadmill motion) is of importance. This is done by dividing it into two terms, one in phase with the



Fig. 5. Example of (a) a measured body-weight normalised force time-history, (b) its corresponding square-root PSD, (c) the normalised cross-spectral

density between the measured lateral force and displacement and (d) the corresponding phase spectrum from a single pedestrian walking on a laterally

oscillating surface (frequency 1.06 Hz and amplitude 19.4 mm). The spectra in (b)–(d) are obtained with df ¼ 2=15 Hz and averaged over four non-

overlapping rectangular windows.
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acceleration (inertial) and one in phase with the velocity (damping) of the treadmill, by considering the cross-covariance of
the force and the treadmill motion.

3.8.1. Work done by pedestrian-induced lateral force

In a situation where a pedestrian is synchronised with the structure (or locked-in), the relative phase between the self-
excited pedestrian force and the treadmill movement is constant and the phase angle can be determined. On the contrary,
for a non-synchronised pedestrian, the phase angle may vary in time, whilst the pedestrian is still transferring energy into
the structure. Therefore, the component in-phase with the velocity of the structure is determined through the average
work done by the pedestrian per unit time PF through integration of the product of the lateral pedestrian force F(t) and the
structural velocity _xðtÞ:

PF ¼
1

Ttot

Z Ttot

0
FðtÞ _xðtÞ dt (12)

The integration in Eq. (12) is more conveniently evaluated in the frequency domain by considering the cross-covariance
between the pedestrian force F(t) and the platform velocity _xðtÞ (at zero time lag). Recalling that the mean value has been
removed from both F(t) and _xðtÞ, the cross-covariance is written as [49]

Cov½F, _x� ¼ E½FðtÞ � _xðtÞ� ¼ lim
T-1

1

T

Z T

0
FðtÞ _xðtÞ dt¼

Z 1
�1

SF _x ðf Þ df (13)

SF _x ðf Þ ¼ lim
T-1

1

2pT
F �fFðtÞgF f _xðtÞg ¼ i2pf � SFxðf Þ (14)

) SF _x ðf Þ ¼ CoF _x ðf Þ�iQuF _x ðf Þ ¼ i2pf � CoFxðf Þþ2pf � QuFxðf Þ (15)

fFxðf Þ ¼ arctan
CoFxðf Þ

QuFxðf Þ
(16)
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where F fg is a Fourier transform operator, * denotes the complex conjugate and i2=�1. The cross-spectral density, SF _x ðf Þ, is
complex and may be written in terms of its real part, denoted the co-spectral density CoF _x ðf Þ, and the imaginary part called
the quad-spectral density, QuF _x ðf Þ. Thereby, the cross-spectral density contains both the cross-amplitude and the phase
between the processes F(t) and _xðtÞ. It is further noted that for practical use of the cross-spectral density, all imaginary
parts will cancel out, making only the real part of the spectrum of interest [49]. The last equality in Eq. (15) implies that the
cross-spectral density between F(t) and _xðtÞ can be evaluated directly from the cross-spectral density between F(t) and x(t),
simply by multiplying the spectrum with i2pf . This is convenient since the lateral treadmill displacement is measured
directly, whereas the velocity can only be obtained through numerical differentiation of the measured displacement. The
integral in Eq. (12) is now determined through integration of the cross-spectral density, either over the entire frequency
domain, PF ¼ sF _x , or over a specific bandwidth, ~sF _x ðDf Þ. The latter approach is advantageous as it excludes erroneous
contributions from correlated measurement noise or mechanical noise due to the possibility of non-perfect motion of the
treadmill, which may occur at frequencies different from the fundamental lateral vibration frequency, see e.g. Fig. 5(c).The
bandwidth is selected as Df ¼ 0:05 Hz centred at the lateral vibration frequency.

3.8.2. Damping and inertia proportional coefficients

It is now convenient to express the pedestrian force in terms of an equivalent damping force, FD,eq(t), proportional to the
velocity of the treadmill, and an equivalent inertia force, FI,eq(t), proportional to its acceleration so that

FD,eqðtÞ ¼ cp _xðtÞ ¼ cp _x0sinðoLtþjÞ (17)

FI,eqðtÞ ¼ Rpmp €xðtÞ ¼ Rpmp €x0sinðoLtþjþp=2Þ (18)

where oL ¼ 2pfL is the angular frequency, _x0 and €x0 are the velocity and acceleration amplitudes of the lateral vibration, j
is an arbitrary phase and mp is the pedestrian mass. The average work done by the damping force per unit time is
PD,eq ¼

1
2cp _x

2
0. The velocity proportional constant cp is now obtained by imposing the condition that the pedestrian load

inputs the same energy per unit time as that of the equivalent load within the frequency bandwidth Df , thus
~sF _x ðDf Þ ¼ PD,eq. The portion of the total pedestrian mass Rpmp that contributes to the added mass of the structure is
determined similarly to cp, i.e.:

cp ¼
2

_x2
0

~sF _x ðDf Þ (19)

Rpmp ¼
2

€x2
0

~sF €x ðDf Þ (20)

~sF _x ðDf Þ ¼

Z fL þDf=2

fL�Df=2
Re½SF _x ðf Þ� df ¼�2p

Z fLþDf=2

fL�Df=2
f QuFxðf Þ df (21)

~sF €x ðDf Þ ¼

Z fL þDf=2

fL�Df=2
Re½SF €x ðf Þ� df ¼�4p2

Z fL þDf=2

fL�Df=2
f 2CoFxðf Þ df (22)

An example of the application of the spectral analysis for the determination of the force coefficient cp and the phase
angle between the lateral pedestrian force and the treadmill displacement is shown in Fig. 5. According to the definition of
the coefficients cp and Rp, in Eqs. (17)–(18), the self-excited force appears positive on the right-hand side of the equation of
motion, thus positive values of cp and Rp indicate a decrease in the modal damping and mass, respectively.

3.9. Error estimation

From Eq. (3) it is apparent that in the absence of damping and external load, the measured force and the inertial force of
stage 3 should be equal in magnitude and opposite in direction. Having calibrated the load cell (see Section 3.6), an
estimate of the error can be made by considering the residual force F̂ ðtÞ, measured for an empty treadmill and defined as

F̂ ðtÞ ¼ FIðtÞþFEðtÞ (23)

At each combination of lateral vibration frequency and amplitude, the velocity and acceleration proportional
coefficients were calculated according to Eqs. (19)–(20), as well as the total standard deviation of the force. In Fig. 6 the
results from these calculations are shown, which indicate the level of error expected in the tests. For the velocity and
acceleration proportional load coefficients, the mean errors are �1.0 N s/m (S.D. 4.7 N s/m) and 0.3 kg (S.D. 2.3 kg),
whereas the mean error on the total force is 1.2 N (S.D. 0.2 N). For all practical purposes, these errors have been considered
acceptable.
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4. Results and discussion

4.1. Walking speed and frequency

The mean normal walking speed during the tests was 1.27 m/s (S.D. 0.23 m/s) for women and 1.30 m/s (S.D. 0.20 m/s)
for men, while the mean normal walking frequency was 0.87 Hz (S.D. 0.09 Hz) for women and 0.85 Hz (S.D. 0.07 Hz) for
men. The mean walking speed and walking frequency, f w, for all test subjects were 1.29 m/s (S.D. 0.21 m/s) and 0.86 Hz
(S.D. 0.08 Hz), respectively, whereas the mean weight of the subjects was 730 N (S.D. 148 N), with a considerable difference
between male (808 N and S.D. 110 N) and female subjects (603 N and S.D. 111 N). The probability distribution of the
normal walking frequencies, as observed in the tests, can be approximated reasonably with a normal distribution, whereas
the walking speed and the subject’s weight are more randomly distributed.

A slight correlation between the walking speed and the walking frequency was observed (with linear correlation
coefficient r¼ 0:6612). In Fig. 7 the pedestrian walking speed versus the walking frequency is shown, together with
compiled data from earlier experiments conducted by Pansera [51], Terrier et al. [52] and Ingólfsson [53]. Ingólfsson et al.
[54] used a power law of the type fw = avp

b to fit the experimental data (with a = 0.81 and b=0.35) which is also shown in
Fig. 7. Opposed to a linear regression, the advantage in using a power law is that it fulfills the boundary condition vp(0)=0,
whilst allowing for non-constant values of the stride length.

Furthermore, a slight linear correlation was observed between the pedestrian weight and the RMS value of the pedestrian load
ðr¼ 0:6720Þ. Their relationship is shown in Fig. 7, together with a linear regression, written as sF ¼ 0:041 W. The other physical
characteristics, such as length of leg or pedestrian height did not show signs of significant correlation with either the pedestrian
force or the walking speed and frequency, confirming similar observations made by Ricciardelli and Pizzimenti [28].

4.2. Static pedestrian walking tests

Little to no correlation between the DLFs and the walking frequency could be observed from the tests. In Fig. 8 the DLFs
of the first five load harmonics are shown as a function of frequency (normalised with the mean walking frequency of the
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population, f w), calculated assuming a broad-band model as described in Section 3.7. Also, in Fig. 8, the fundamental DLF
calculated using the narrow-band model is shown as a function of the damping ratio. It is noted that a considerable
difference between the DLF calculated using the broad-band and the narrow-band models is observed, particularly at low
structural damping ratios, as is characteristic for many long-span footbridges. This observation stresses the importance of
intra-subject variability when calculating pedestrian-induced excitation and that the DLFs which are calculated on the
basis of the broad-band model can be very conservative. Furthermore, the inter-subject variability in the DLFs is made clear
by the large scatter of the measured data and an accurate description of the loading from a group of pedestrians seems only
possible through probability distribution functions. The low mean value combined with large scatter suggests the use of a
skewed distribution as a fit to the measured data, e.g. the lognormal distribution with the probability density function:

pðxÞ ¼
1

xx
ffiffiffiffiffiffi
2p
p exp �

½lnx�w�2

2x2

" #
(24)

The parameters w and x are related to the sample mean E½X� ¼ mX and variance Var½X� ¼ s2
X so that

w¼ lnmX�
1

2
ln 1þ

sX

m2
X

 !
, x2

¼ ln 1þ
sX

m2
X

 !
: (25)

The experimentally obtained cumulative distribution functions of DLF1, DLF3 and DLF5 (from the broad-band model) are
shown in Fig. 9 together with the fitted lognormal distribution.



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

DLF [-]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Broad band DLF1

Broad band DLF3

Broad band DLF5

Broad band DLF1 (CDFfit)

Broad band DLF3 (CDFfit)

Broad band DLF5 (CDFfit)

Fig. 9. Cumulative distribution function for the equivalent DLF of the odd harmonics using the broad-band model, shown with fitted log-normal

distribution functions.

Table 3
Mean and characteristics values of the measured equivalent DLFs from the static pedestrian tests.

j=1 j=2 j=3 j=4 j=5

Broad-band model, DLF j (mean value) 0.047 0.007 0.025 0.005 0.011

Broad-band model, DLFj (95 percent fractile) 0.073 0.010 0.034 0.007 0.016

Narrow-band model ðzn ¼ 0:01Þ, DLF j (mean value) 0.028 0.003 0.017 0.002 0.008

Narrow-band model ðzn ¼ 0:01Þ, DLFj (95 percent fractile) 0.041 0.006 0.024 0.002 0.012
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The mean value of the DLFs and that with a 95 percent non-exceedance probability are shown in Table 3, both for the
narrow-band (when assuming zn ¼ 0:01) and the broad-band models. Clearly, there is a difference between these two
methods, as illustrated in Fig. 8 and since the DLF depends on the structural damping, the most conservative method in a
design situation is to use the broad-band model, in particular if the damping is uncertain or even unknown.

The results from the static tests compare generally well with the values reported by other researchers, see e.g.
Section 2.1, both qualitatively in terms of data scatter and frequency dependency and also quantitatively in terms of
characteristic values. In particular, the characteristic values of the DLFs reported by Ricciardelli and Pizzimenti [28] from
the narrow-band model (with zn ¼ 0:01) agree very well to those reported herewith, as expected since the experimental
setups are (near) identical and the test subjects are drawn from a similar pool of persons. It is further shown that the
lognormal distribution provides a reasonable fit to the data and may be used to model the probability distribution of the
DLFs. This is especially useful when modelling the pedestrian-induced loading in a probabilistic sense e.g. through Monte
Carlo simulations. It should be noted that these DLFs were measured in the absence of lateral vibrations and cannot be
used for estimating vibrations in footbridges where the self-excited part of the load cannot be neglected.
4.3. Dynamic pedestrian walking tests

Pedestrian walking tests were performed at different lateral oscillation frequencies, fL, and amplitudes, x0, with up to 66
test subjects at each particular combination of fL and x0 (see Table 2). In each test, both the velocity and acceleration
proportional constants cp and Rp were determined according to Eqs. (19) and (20), respectively. In Fig. 10, the mean value
cp for each lateral vibration frequency and amplitude is presented, both as a function of normalised frequency and
amplitude. The frequency axis is normalised by the mean walking frequency of the population, f w.

In Fig. 10(a), the curves are made of an initial near-linear segment (up to fL=f wffi0:8 on the horizontal axis), followed by
an almost horizontal segment. The slope of the linear segment and the value of the constant segment increases with
decreasing amplitude. At the lowest frequencies cp is negative (i.e. damping is added to the structure), but at higher
frequencies ðfL=f w\0:50Þ the coefficient is positive. In addition, in Fig. 10(b) there is a clear correlation between the mean
load coefficient and the displacement amplitude at most frequencies. In particular for fL=f w40:89, the negative damping
decreases with increasing amplitude, which demonstrates the self-limiting nature of the associated structural response. At
lower frequencies, the added damping decreases for an increase in the displacement amplitude.

The mean values of cp presented herewith are lower than 300 N s/m as reported from the London Millennium Bridge [2].
It should be noted that a direct comparison between load coefficients cp obtained in this study and that reported from the
Millennium Bridge is not possible, first of all because on the Millennium Bridge the result is based on a limited number of
full-scale experiments and may therefore represent a different fractile than the mean value. Secondly, the value of cp
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reported by Dallard et al. [2] is estimated from back calculations of measured response and involves some inaccuracy in
several bridge and crowd specific parameters; particularly modal mass, shape, damping and spatial pedestrian
distribution. Based on the inverted pendulum model developed by Macdonald [15] the equivalent damping coefficient
per pedestrian walking on a laterally moving surface was shown to depend strongly on the lateral oscillation frequency,
with a maximum value of around 200 N s/m.

The mean value of the mass proportional constant, Rp, shows a clear dependency on the lateral vibration frequency. In
Fig. 11(a) it is shown that at low frequencies, Rp is positive and pedestrians therefore subtract from the overall modal mass
of the structure. This effect of the pedestrian mass has been explained as ‘‘added stiffness’’ by Pizzimenti and Ricciardelli
[36]. At higher frequencies however it becomes negative and near constant (at around 0.12–0.20), suggesting that
pedestrians (on average) add to the modal mass of the structure. The transition from positive to negative values of Rp

occurs in the frequency range fL=f w � 0:5520:85 and is amplitude dependent, i.e. for large amplitudes, the transition
frequency is generally lower. In Fig. 11(b), it is noted that at lower frequencies, Rp decrease as the lateral vibration
amplitude increases, but at higher frequencies it is near constant. The inverted pendulum model proposed by Macdonald
[25] predicts positive values for Rp (i.e. decreased modal mass) in the frequency range fL=f w 2 ½0:3;1:3� and maximum value
of 61 percent of the body weight. For lower frequencies, Rp becomes negative with a maximum value of �1 at fL=f w ¼ 0.
The results presented herewith contradict this, but as noted by Macdonald [25], the results from the inverted pendulum
model depend on the specific control law used for the pedestrian balance control and with a different control scheme,
positive values for Rp are predicted in the low frequency range and negative values in the higher frequency range, similar to
the results presented herewith.

Although the mean values show some clear frequency and amplitude dependency, it is stressed that a very large inter-
subject variability was observed in the tests, illuminated by the large scatter in the measured load coefficients. Therefore,
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the load coefficients are best described through their probability distribution and central moments (mean and standard
deviation). In Fig. 12(a)–(b), the experimentally obtained probability distributions of cp and Rp for different frequencies are
shown. In Fig. 12(c)–(d) the development of the mean value 7one standard deviation error bar of the same load
coefficients are shown as a function of the normalised lateral vibration frequency.

Further analysis reveals that the data scatter is particularly pronounced at low vibration amplitudes. The reason for this
is found in the definition of the load coefficients in Eqs. (19) and (20), where it is noted that _x2

0 and €x2
0 appear in the

denominator and therefore causes a large magnification at low vibration amplitudes. This phenomenon is illustrated in
Fig. 13, showing the mean value of the load and mass coefficients and the single standard deviation boundaries as a
function of the lateral velocity and acceleration, respectively. We note that for cp, the mean value is fairly constant over the
entire amplitude range, but the standard deviation decreases as the velocity increases. The mass coefficient, Rp, however,
seems to decrease with the acceleration, with a positive value at low accelerations and a negative value in the acceleration
range 0.1–0.4 m/s2.

4.3.1. Qualitative assessment of the potential for human–structure synchronisation

From the tests various qualitative observations regarding the potential for human–structure synchronisation were
made. In tests where the natural walking frequency coincided with the walking frequency of the test subject, people
reacted differently; some would adjust their steps to match a ‘‘comfortable’’ phase, whilst others walked unaffected by the
movement. Those who adjusted their phase to that of the treadmill, did so in different manner, i.e. some people spread the
legs further apart whilst others crossed their legs during walking and therefore the load induced is different in these two
situations. Furthermore, it was also observed that even the same person did not necessarily react in the same way in two
nearly identical situations.
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ẋ0 [m/s]

c p
 [

N
s/

m
]

Experimental data
c̄p ± �cp
cp

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Most of the test subjects felt at some point during the tests that they were affected by the lateral vibrations. The
combination of low frequency and large amplitude was generally described as uncomfortable and several test subjects
mentioned a resemblance to walking on a rocking boat. When the vibration frequency was close to the walking frequency,
the vibration was often described as ‘‘clearly perceptible’’ or ‘‘annoying’’. The reason is that the relative phase between the
treadmill movement and the steps changes slowly and thereby the reaction force from the treadmill (as felt by the
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pedestrian) is constantly changing making it difficult to adapt to the vibration. This frequency range can be described as a
potential ‘‘lock-in’’ range where people might tend to adjust their walking frequency to that of the treadmill lateral motion.
In the tests presented herewith, this would be possible by adjustment of the stride length. However, a more efficient way
would be to adjust the walking speed, which was not possible due to restrictions posed by the nature of the test
equipment. Indeed, some of the test subjects made complaints that they would prefer to change their walking speed in an
attempt to avoid the uncomfortable feeling of walking at a frequency close to the vibration frequency. Typically, these
complaints would only occur during large amplitude vibrations, e.g. x0Z19 mm.

Additionally, it is worth pointing out that, although most of the pedestrians were affected by the lateral vibrations of the
treadmill, the large scatter in the data and the visual observations made during the tests suggest that synchronisation of
pedestrians walking on a laterally moving surface is neither generic nor obviously deterministic. Instead it is to a large
extent governed by randomness and whilst some people feel comfortable adjusting to the platform motions, others are
more comfortable walking at their own selected pacing rate. Whilst some people prefer adjusting their phase to match the
displacement of the treadmill, others choose to match the acceleration or velocity.

The observed randomness in the behaviour of the pedestrians and lack of obvious signs of human–structure
synchronisation, combined with the fact that negative damping could be generated at most frequencies, suggests that
synchronisation is not as important as generally believed. To confirm this, further analysis were undertaken on the walking
patterns of 7 test subjects that were instrumented with waist-mounted tri-axial accelerometers. These tests revealed that
synchronisation is not a pre-condition for the development of velocity (and acceleration) proportional pedestrian forces,
which may lead to large amplitude lateral vibrations in footbridges [55].

5. Conclusions

The data presented in this paper are based on measured forces from 71 pedestrians walking on both a laterally fixed and
oscillating surface at various amplitudes and frequencies.

Particular attention is paid on quantification of the self-excited component of the pedestrian load through a damping
proportional and a mass proportional coefficient, respectively. For both these coefficients, a large scatter is observed at low
vibration amplitudes, but decreases as the amplitude increases. Analysis of the self-excited pedestrian load reveals that
pedestrians (on average) consistently input energy into the structure in the normalised frequency range between
approximately 0.6 and 1.2 and that the component in phase with the structural velocity can be modelled as a velocity
proportional force. Interestingly, the coefficient of proportionality, cp, decreases with an increase in the vibration
amplitude and can therefore not be treated as a constant parameter (Fig. 10). Instead the load has a nonlinear component
due to this dependency. The decrease in negative damping as the vibration amplitude increases, suggest that the
pedestrian-induced loading is self-limiting. The component in phase with the acceleration is analysed and found to depend
on the frequency of the structure. It is observed that for low frequencies, pedestrians subtract from the overall modal mass
and add to the mass at higher frequency motion, with an amplitude-dependent transition.

The very large scatter in the data suggests that a probabilistic approach is necessary for an accurate estimation of the
susceptibility of a footbridge to excessive vibrations. In particular, the critical number of pedestrian needed to trigger SLE
may vary considerably depending on the particular crowd occupying the bridge.

Finally, since positive values of cp occur in a broad frequency range, synchronisation of the walking frequency to that of
the structure is not necessary for the development of velocity proportional loads, which can be represented in the form of
negative damping.
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